Wednesday, May 30, 2018


In 1990 Ernst Leitz Canada, ELCAN, was sold to Hughes Aircraft.  Thus one of the most important aspects of Leica came to an end.  Today, 28 years later, many Leica owners don't even realize that Leica had once a manufacturing facility on the North American continent.

In 1982 it was reported that Nikon was planning to assemble cameras in the US.  Not only their less expensive, amateur equipment, but also their top of the line, professional cameras.  This was considered a very bold step.  Even though nothing came of it, it did prove the farsightedness of E. Leitz Wetzlar, to establish a North American branch in 1952.

Immediately after the war it became apparent that it would take the German industry several years to be able to produce enough goods to start exporting again.  On the other hand, the majority of the German population was hardly in a position to buy Leica cameras.  The Leitz family had to look for a solution.  It appeared to have come when Mr. Walter Kluck joined the Ernst Leitz Co.

Walter Kluck

Before Walter Kluck started to work for Leitz, he had considered opening a manufacturing plant in France, together with a friend.  When presenting this idea to the Leitz family, it was generally agreed upon that manufacturing Leicas in France would open the export market a lot sooner.  The decision was made to start the operation in the Saar territory which was under French occupation at that time.  A lot of regulations had to be overcome, however, and in order to speed things up, some of the machinery necessary was taken out of Wetzlar by night and transported to the new location.  So it was by some dubious means that this new venture got its start.

Initially Leitz coated only lenses of prewar production and later even manufactured complete lenses and mechanical parts for the Bolex motion picture cameras.  Finally even cameras were made.  They had the famous “Monte en Saare” engravings, cameras with a considerable collector's value today.

Things in Europe didn't look too good, however.  The cold war began to heighten and the Leitz family began making plans to avoid losing the entire operation once again to war.  The solution seemed to be an entirely different region.  Suggestions like North Africa, South America, Spain and Ireland came up, but eventually someone mentioned North America, particularly Canada.  After a lot of considerations, Canada was finally chosen as the most logical place.  After all, North America was the largest export market.  Another reason for going to Canada instead of the US at the time was that the name Leitz was still under alien property control in the US and Leitz would not have been able to use their own name in this country.  It was also the case that the American immigration laws at the time were rather tight and it would have taken too long to get entry permission for the number of people necessary to start such a venture.  Thus Canada was the best choice.

Right from the beginning it was decided to look for a location not larger than 30 or 40,000 people.  In 1951 Leitz finally narrowed the choice to three places, Granby in Quebec, Smith Falls, which is near Ottawa and, of course Midland, Ontario.  Smith Falls was quickly eliminated from the list because the name was too difficult to pronounce in German or Spanish as well as a number of other languages.  Another consideration was the fact that Midland had the same number of letters was Wetzlar.  This enabled the insertion of the Midland name in all of the Leitz trademarks without the necessity of any changes.  Before the war a shipyard had operated in Midland and a lot of the population had found employment there.  But it had been decided to close the yard at the end of the war.  A lot of people were out of work and since there were no other towns nearby that could have offered jobs, the people in Midland were very eager to get Leitz to come to their town.  So Midland was the choice.

ELCAN Midland Ontario

A brick from the Leitz plant in Wetzlar was fitted into
the wall at the main entrance to the Midland plant.

But other obstacles had to be overcome.  One was that Leitz needed permission from the German government because something like this had never been done before.  Leitz was actually the first company to take such a step.  It was also necessary to establish a program that would allow some quick sales right at the beginning because at the time Leitz was allowed to bring only $50,000 into the country and they had to make sure that they would not run out of money before new revenues started to come in.

Unfortunately, the new facilities were not quite ready for operation when the “Leica people” arrived.  To avoid losing precious time, an assembly facility was temporarily set up in the Midland Ice Arena.  Under the leadership of Walter Kluck, the first lens components were finished after only one week and the first completed Leica lenses and cameras were ready after only four weeks.

Soon after moving into the new facilities they started not only to assemble but to actually manufacture part as well.  After only three years of operation the Midland design department was established.  Initially it dealt only with mechanical designs, but after borrowing an optical designer from Wetzlar, optical design was also taken up.  This designer had a very good reputation and it was planned to “loan” him to Midland for only six months.  He never made it back to Wetzlar and his skills were primarily responsible for establishing Midland as one of the foremost lens design departments in the entire world.  The gentleman's name was Professor Dr. Walter Mandler.  His crowning achievement was the design of the 50mm f/1 Noctilux.  The design department became so successful that at the time most of the Leica lenses were designed in Midland rather than in Wetzlar.

Early computer installation at ELCAN

ELCAN Picker x-ray lenses

Besides the Leica program, Ernst Leitz Canad (ELC) became involved with the production of optical equipment for other companies, such as Hughes Aircraft, RCS and Picker X-ray.  All told, there were about 100 companies that did business with Leitz.  Besides the civilian market, ELC was also heavily involved in manufacturing for the US Defense Department, primarily the US army but also the Navy which lead to the ELCAN HIGH RESOLUTION 35mm CAMERA SYSTEM.  Already in the 1960s they were aked by the US Navy to develop a high resolution 35mm camera system.  This was based on the Leicaflex SL.

Leicaflex SL with 75mm f/2 ELCAN Lens

Photos: James L. Lager, Leica Illustrated History, Vol. II, 1994, p. 307, 309 and Vol. III, 1998, p. 319

Resolution, the ability of a lens to project fine detail has always been a measure of great importance in the evaluation of photographic lenses.  The following are excerpts from an article by Joseph A. Schantz, Assistant Head of Research and Development Department at the Navel Photographic Center in Washington, DC.

Research by optical glass manufacturers has resulted in optical glasses having improved properties with respect to secondary color aberration.  Since this glass became available lenses having complete color correction over an extended spectral range have been developed for a Navy 35mm camera system.

Since 1963 the Navel Photographic Center and the Navel Air Systems Command as a matter of continuous policy have expanded efforts to upgrade 35mmphotography on a systematic basis.  The aim of this work was not only to improve the quality of documentary and reported photography but also to improve intelligence collection capabilities of the Navy’s cameras.

While most of this type of photography by the Navy is classified, one application, according to a former Navy officer, was in the Mediterranean.  For instance, US Navy ships often came into close contact with Russian Navy vessels.  It was common practice to shoot a series of photographs of these ships during such encounters.  The relative ease of operation of a 35mm camera compared to medium format and even more so large format cameras proved to render better photographs with 35mm equipment.  It should be noted that the article by Mr. Schantz was written prior to the advent of digital photography.  However, the principles of lens design are essentially the same in digital photography also.  To get the necessary detail compared to medium and large format photography it was necessary to develop a special, high resolution 35mm camera system.  Mr. Schantz further writes:

It was recognized that the resolution of a lens is limited in part due to a lack of correction of secondary colors.  Based on the light refracting properties of available optical glasses, most lenses can only bring two wavelengths to a common focus.  The optical designer must choose these wavelengths to best suit the intended use of the lens.  All other wavelengths are then focused in planes predetermined by the properties of the glasses over which the designer has no control.

Until the advent of extra low dispersion glasses the only exceptions were apochromatic microscope lenses and some telephoto lenses for 35mm camera systems which incorporated lens elements made of calcium fluoride crystals or alum and some process lenses that used large opposite powers in their element configuration.  But these were limited to apertures of f/9 or smaller.

Lenses utilizing elements made of calcium fluoride have proven to be of very good performance.  But they are not without drawbacks.  Calcium fluoride unfortunately is very soft and scratches easily.  Therefore front elements made of calcium fluoride usually are protected by a clear front glass plate or a thin lens element made of conventional optical glass.  Furthermore calcium fluoride has a rather high temperature coefficient which means that it expands and contracts very much during temperature changes.  In some instances this had led to calcium fluoride lens elements literally shattering when objected to great temperature differences.  It is also the case that these elements do change their optical properties during temperature changes which makes it necessary to allow lenses incorporating such elements to be focused past the infinity mark.  With other words, while the performance of such lenses is quite high, this must be paid for with a number of drawbacks.

However, research has produced optical glasses that do display the same or similar properties as calcium fluoride, but without the above mentioned drawbacks.  The first such glass was developed in the late 60s and early 70s by the glass research laboratory at Ernst Leitz Wetzlar, the maker of Leica cameras.  Not until approximately ten years later were similar glasses made available by other glass manufacturers like Schott and Nikon.  These glasses are commonly referred to as extra low dispersion or fluor crown glasses.  They allow the easier design and manufacture of apochromatic lenses.  Only true apochromats have the ability to focus all colors of the visible spectrum at one common point.  Mr. Schantz further states:

A series of such apochromates has been designed and manufactured under contract by Ernst Leitz Canada Ltd (Elcan).  The lenses were designed by Professor Dr. Walter Mandler.  The lenses consist of: Elcan-R 75mm f/2, Elcan-R 180mm f/3.4, Elcan-R 450mm f/5.6.

ELCAN 75mm f/2
Photo: L Camera Forum

180mm f/3.4 Apo Telyt

Schematic of the 180mm f/3.4

These lenses were designed for the Leica R cameras and are color corrected from 400 to 900 nanometers. These lenses permit photography in black and white, color and infrared with the same focal setting.  When subjected to a series of filtered responses,(measurements with colored light) of blue, yellow, red and infrared, the yellow, red and infrared responses were grouped over a focal plane spread of only 0.02mm.  (These are data for the 180mm f/3.4 which was tested at maximum aperture.  Initially a classified piece of equipment, the lens later became available on the civilian market as the 180mm f/3.4 Apo Telyt-R) The curve of the blue filter is shifted 0.07mm closer to the lens.  The maximum focal plane shift from blue to infrared is 0.09mm or ±0.045mm.  If this lens is used only for daylight operations (no infrared), the maximum focal plane shift is reduced to 0.08mm or ±0.04mm which is less than 1/2000 of an inch.  Considering the accuracies to which photographic cameras (from Leica) are built, this tolerance falls within those specifications.

Most camera manufacturers apply less stringent tolerances.  The industry average standard is 1/1000 of an inch, with a few manufacturers like Canon, Nikon and Contax going to 1/1250 or 1/1500 of an inch.  Leica cameras on the other hand continue to be made to tolerances of 1/2500 of an inch or more precisely 1/100 of a millimeter.  Tolerances applied for the manufacture of lenses often needs to be much smaller.  Starting with the optical glass, Leica applies a standard of ±0.0002% for the accuracy of the refractive index.  This compares to the international standard of ±0.001%.  The accuracy of the Abbe number, the measure for dispersion is ±0.2% for Leica compared to ±0.8% internationally.  For the manufacture of individual lens elements Leica allows production tolerance of no more than ¼ lambda or ¼ of the average wavelength of light which corresponds to approximately 500 nanometers or 0.0005mm for the accuracy of the lens surface.  In comparison, the tolerances applied by other lens manufacturers are ½ lambda or 0.001mm.  For the production of aspherical lens elements Leica applies even tighter tolerances which cannot exceed 0.03 micrometer or 0.00003mm.

For comparison purposes the same procedure was repeated with a representative sample of a high quality photographic achromatic objective (only corrected for the primary spectrum).  The Leica Elmarit-R 180mm f/2.8 lens was stopped down to f/3.4 for the test.  It is strikingly evident that the different colors focus at quite different locations on the lens axis.  The maximum focal plane shift from blue to infrared is 0.5mm compared to 0.09mm for the 180mm f/3.4 lens.  This amounts to an increase by a factor of 5.6.  The maximum focal plane shift under daylight conditions is 0.2mm as compared to 0.08mm for the 180mm f/3.4 lens.  This amounts to a factor of 2.5 over the 180mm f/3.4 lens.

The most obvious advantage of the 180mm and the 450mm lenses occur when high resolution films are used.  The 180mm lens would outperform any other lens with any type of photographic emulsion (or digital sensor)

The performance of the 180mm Apo Telyt-R is well known and Mr. Schantz’s article only confirms the fact that the 180mm f.3.4 Apo Telyt-R is one of the best lenses ever made.

Mr. Schantz writes the following about films:

When the improved lenses were tested with regular fine grain films, little improvement could be noticed over the performance of regular good lenses.

Through the cooperation of film manufacturers a number of film samples were tested for performance with the new lenses.  Two classes of film emulsions gave promising results.  These classes were (a) high definition aerial films and (b) high resolution document copy films.

These aerial films are fine grained, slow, high contrast and have extended red sensitivity.  However, when processed as normally recommended by the manufacturer for aerial use, they have too high contrast for general ground photography.  The same holds true for the high contrast copy films since they were designed for high contrast microfilming.

Kodak High Contrast Copy Film when processed in the POTA developer of Marilyn Levy (Levy, M., “Wide Latitude Photography,” Science and Eng. Vol. II Number I, January, February 1967) yield excellent high resolution negatives with adequate film speed.  The Agfa High Contrast Copy film gives a practical combination of good resolution and emulsion speed.

According to the research done by Mr. Schantz, the best resolution obtainable with conventional film is 250 – 300 l/mm compared to 550 l/mm with the Agfa High Contrast Copy Film and 600 l/mm with Kodak 5069 and 3414 film.

Those are very impressive figures.  It was soon determined that in order to make enlargements that would show this amount of detail, a special enlarger was necessary.  For that reason Leitz made a modified version of their Focomat II enlarger where the standard light source was replaced with a point light source.  Only such illumination systems are capable to reproducing extremely small detail from a negative.

The 35mm high resolution camera system was classified material for several years.

Of the three lenses, the 180mm f.3.4 ELCAN lens proved to be the most practical one which resulted in a declassification, allowing Leitz to make the 180mm part of their lens line for the Leica reflex cameras.  It entered the market in 1975 as the 180mm f/3.4 Apo Telyt R.  Even today it ranks as one of the best lenses ever made for general photography.

One of the most unusual military developments was an underwater camera system which Leitz developed for the US Navy.  It primarily consisted of a complete set of lenses for underwater work, not only for 35mm cameras but also for medium format, 16mm motion picture and TV cameras.  These were rather unique lenses because they were not part of a camera that was simply put into a water tight housing.  Instead the lenses were designed to be exposed to the water with their front element.  The usual way of using under water housings for conventional cameras incorporates lenses that are designed to work in air.  When designing such lenses, Leitz even takes the refractive index of air into consideration.

 ELCAN under water housing for Leica M camreas, front view

Back view

Inside, front and back view with Leica M4 camera installeed 

Today the system is on display, together with other military equipment
at the Leica Museum in Wetzlar

ELCAN under water housing for motion picture and video cameras

ELCAN under water lens system with water contact front lens element

The Leitz under water system instead was designed according to the refractive index of water.  As a matter of fact, since this system was to be used primarily in salt water, it was the refractive index of salt water that was used in the design of these lenses.  However, not all oceans have the same salinity.  So Leitz went one step further and took the refractive index of the salinity of the various oceans into consideration.  This was possible with an interchangeable front element of their water contact lenses.  This overall design actually considers the water as an integral lens element of the entire system.   To avoid the need to test these lenses in the various oceans all over the world, Leitz built a large water tank that could be flooded with water of the appropriate salinity.

Water salinity test tank

The correction of these lenses is so good that, when water is clear enough, there is no way of telling that the pictures were taken under water.  Leitz was the first company to suggest such a design.
What is even more amazing is the fact that the thick water contact front element is so strong that the lenses can be used in the greatest ocean depths without any problems at all, including the deepest part on earth, the 36,200 feet deep Challenger Deep of the Mariana Trench.

In the middle of the 1970s ELC decided to look into the manufacture of cameras as well.  Until then the whole operation had been dependent on selling their wares to others.  They had been compared to a tire company supplying tires to car manufacturers.  ELC's success was entirely dependent upon the successes of the companies they supplied.  It was decided that the manufacture of cameras would add a great new dimension to the Canadian Leitz operation.  After Wetzlar had given its blessing and given 100% support to this venture, all the tooling for the M4 cameras was moved to Midland and a great number of specialists from Wetzlar helped to get this venture off the ground.  The first camera of this new venture was the M4-2.  Basically identical to the old M4, it was modified to accept a motor winder which greatly enhanced the versatility of the camera.  Soon additional development of this camera resulted in the M4-P with the added versatility of a 28mm and 75mm viewing frame and a motor winder capable of running continuously at the rate of three frames per second.

One little known fact is that in 1970 Ernst Leitz Canada was awarded the design and manufacturing contract for the new 70mm IMAX projection system and in 1983 Ernst Leitz Canada began work with Panavision for their state of the art cinematographic lenses.  These are just two examples of the many designs and manufacture they did for outside companies, both for civilian and military use.

ELCAN Panavision lenses

Thus Midland had developed into a fully independent camera and lens manufacturer.  Their name Ernst Leitz Canada and their trade mark ELCAN have earned the highest reputation throughout the world and it was only a matter of time until additional new and exciting developments from this branch of Leitz would make the news.

Lens coating machine

Camera assembly

EROS IV optical transfer analyzer

ELCAN mechanical department

When Leitz decided to build the manufacturing plant in Midland there was no doubt that it should operate and manufacture at the same high standards that the world had grown accustomed to with the products from Wetzlar.  Thus it came as no surprise to me on my first visit to Midland that the interior was very much like that in Wetzlar.  Although the buildings were not anywhere near as large as the main plant in Wetzlar, the interior of the actual work areas was almost identical.  The relatively stark interior immediately showed a no frills, but an all business attitude.  Quality control was as tight as in Wetzlar.  Everywhere, regardless of what work was being performed, there were people doing checks and rechecks.  Virtually all workbenches had some sort of testing instrument on them.  The whole place had a rather unhurried atmosphere.  The workers were under no time pressure at all.  Everyone could take the time necessary to do things right.  This was further enhanced by the total absence of assembly lines.  All work was done on individual workbenches.

The same was the case in the lens grinding department.  A lot of the work was performed by machines, but I saw at least one person busy grinding a lens element by hand.  It is a known fact that nothing can replace hand grinding when ultimate precision is of the essence and Leitz was still doing it.

While there were obviously a lot of people from the Midland area employed there. It was very obvious that there still was a large German contingent, easily recognized by the many German accents that could be heard in almost all conversations.

1982 marked the 30th anniversary of the Midland operation.  It had established itself as one of the foremost optical design companies in the world and Leitz would not have been at that time what they were without the branch in Midland.

In 1990 Hughes Aircraft Co. purchased Ernst Leitz Canada. The company expanded its operations as Hughes Leitz Optical Technologies.  During the period from 1997 to 1999 Raytheon acquired the optical business units of Texas Instruments and Hughes Aircraft Co. Midland and Richardson, Texas.  The units were merged to form ELCAN Optical Technologies.  From 2000 to 2002 ELCAN Optical Technologies underwent an aggressive marketing and technology development program and focused its combined experience to serve telecommunications, defense, commercial and industrial markets.  In 2003 ELCAN integrated with Raytheon's microelectronics facility in Malaga, Spain. Established in 1992, this advanced electronics manufacturing plant expanded ELCAN's capabilities with complete EMS operations, electro optical integration and better access to European customers.  The same year ELCAN launched SpecterIR™, the world's first uncooled infrared rifle scope focused on Homeland Security and low cost military applications.  In 2004 ELCAN launched PhantomIR™, a novel uncooled infrared binoculars also focused on Homeland Security and military applications.  In 2005 Elcan became the world's largest manufacturer of military electronic rifle scopes and released its first consumer rifle scope: DigitalHunter™. The world's first fully electronic rifle sighting system designed for sportsmen, DigitalHunter™ is a quantum leap in sporting optics technology, eclipsing the traditional glass-and-metal design of conventional rifle scopes.

Today Elcan's total capabilities include manufacturing in the fields of medical, electronic, defense and security, sighting systems, and contract manufacturing.

 For more information go to:

To comment or to read comments please scroll past the ads below.

All ads present items of interest to Leica owners.



Buy vintage Leica cameras from 
America's premier Leica specialist 


Click on image to enlarge

Please make payment via PayPal to GMP Photography

Click on image to enlarge
Please make payment via PayPal to GMP Photography

Click on image to enlarge
Please make payment via PayPal to GMP Photography

No comments:

Post a Comment